Главная > Математика > Стереометрия. Геометрия в пространстве
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

8.4. Усеченный конус.

Усеченный конус получается, если от конуса отсечь меньший конус плоскостью, параллельной основанию (рис. 8.10). В усеченном конусе два основания: "нижнее" — основание исходного конуса — и “верхнее" — основание отсекаемого конуса. По теореме о сечении конуса — основания усеченного конуса подобны.

Высотой усеченного конуса называется перпендикуляр, опущенный из точки одного основания на плоскость другого. Все такие перпендикуляры равны (см. п. 3.5). Высотой называют также их длину, т. е. расстояние между плоскостями оснований.

Усеченный конус вращения получается из конуса вращения (рис. 8.11). Поэтому его основания и все параллельные им его сечения — круги с центрами на одной прямой — на оси. Усеченный конус вращения получается вращением прямоугольной трапеции вокруг ее боковой стороны, перпендикулярной основаниям, или вращением

равнобедренной трапеции вокруг оси симметрии (рис. 8.12).

Боковая поверхность усеченного конуса вращения

— это принадлежащая ему часть боковой поверхности конуса вращения, из которого он получен. Поверхность усеченного конуса вращения (или его полная поверхность) состоит из его оснований и его боковой поверхности.

8.5. Изображения конусов вращения и усеченных конусов вращения.

Прямой круговой конус рисуют так. Сначала рисуют эллипс, изображающий окружность основания (рис. 8.13). Затем находят центр основания — точку О и вертикально проводят отрезок РО, который изображает высоту конуса. Из точки Р проводят к эллипсу касательные (опорные) прямые (практически это делают на глаз, прикладывая линейку) и выделяют отрезки РА и РВ этих прямых от точки Р до точек касания А и В. Обратите внимание, что отрезок АВ — это не диаметр основания конуса, а треугольник АРВ — не осевое сечение конуса. Осевое сечение конуса — это треугольник АРС: отрезок АС проходит через точку О. Невидимые линии рисуют штрихами; отрезок ОР часто не рисуют, а лишь мысленно намечают, чтобы изобразить вершину конуса Р прямо над центром основания — точкой О.

Изображая усеченный конус вращения, удобно нарисовать сначала тот конус, из которого получается усеченный конус (рис. 8.14).

8.6. Конические сечения. Мы уже говорили, что боковую поверхность цилиндра вращения плоскость пересекает по эллипсу (п. 6.4). Также и сечение боковой поверхности конуса вращения плоскостью, не пересекающей его основание, является эллипсом (рис. 8.15). Поэтому эллипс называется коническим сечением.

К коническим сечениям относятся и другие хорошо известные кривые — гиперболы и параболы. Рассмотрим неограниченный конус, получающийся при продолжении боковой поверхности конуса вращения (рис. 8.16). Пересечем его плоскостью а, не проходящей через вершину. Если а пересекает все образующие конуса, то в сечении, как уже сказано, получаем эллипс (рис. 8.15).

Рис. 8.13

Рис. 8.14

Рис. 8.15

Рис. 8.16

Рис. 8.17

Рис. 8.18

Поворачивая плоскость ОС, можно добиться того, чтобы она пересекала все образующие конуса К, кроме одной (которой ОС параллельна). Тогда в сечении получим параболу (рис. 8.17). Наконец, вращая плоскость ОС дальше, переведем ее в такое положение, что а, пересекая часть образующих конуса К, не пересекает уже бесконечное множество других его образующих и параллельна двум из них (рис. 8.18). Тогда в сечении конуса К с плоскостью а получаем кривую, называемую гиперболой (точнее, одну ее "ветвь"). Так, гипербола, которая является графиком функции частный случай гиперболы — равнобочная гипербола, подобно тому как окружность является частным случаем эллипса.

Любые гиперболы можно получить из равнобочных с помощью проектирования, аналогично тому как эллипс получается параллельным проектированием окружности.

Чтобы получить обе ветви гиперболы, надо взять сечение конуса, имеющего две "полости", т. е. конуса, образованного не лучами, а прямыми, содержащими образующие боковой поверхности конуса вращения (рис. 8.19).

Рис. 8.19

Конические сечения изучали еще древнегреческие геометры, и их теория была одной из вершин античной геометрии. Наиболее полное исследование конических сечений в древности было проведено Аполлонием Пергским (III в. до н.э.).

Имеется ряд важных свойств, объединяющих в один класс эллипсы, гиперболы и параболы. Например, ими исчерпываются "невырожденные", т. е. не сводящиеся к точке, прямой или паре прямых, кривые, которые задаются на плоскости в декартовых координатах уравнениями вида

Рис. 8.20

Конические сечения играют важную роль в природе: по эллиптическим, параболлическим и гиперболическим орбитам движутся тела в поле тяготения (вспомните законы Кеплера). Замечательные свойства конических сечений часто используются в науке и технике, например, при изготовлении некоторых оптических приборов или прожекторов (поверхность зеркала в прожекторе получается вращением дуги параболы вокруг оси параболы). Конические сечения можно наблюдать как границы тени от круглых абажуров (рис. 8.20).

<< Предыдущий параграф Следующий параграф >>
Оглавление