Главная > Схемотехника > Основы теории цепей
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

14-8. Расчет переходных процессов методом переменных состояния

Метод переменных состояния (называемый иначе методом пространства состояний) основывается на двух уравнениях, записываемых в матричной форме.

Структура первого уравнения определяется тем, что оно связывает матрицу первых производных по времени переменных состояния с матрицами самих переменных состояния и внешних воздействий и, в качестве которых рассматриваются э. д. с. и токи источников.

Второе уравнение по своей структуре является алгебраическим и связывает матрицу выходных величин у с матрицами переменных состояния и внешних воздействий и.

Определяя переменные состояния, отметим следующие их свойства

1. В качестве переменных состояния в электрических цепях следует выбирать токи в индуктивностях и напряжения на емкостях, причем не во всех индуктивностях и не на всех емкостях, а только для независимых, т. е. таких, которые определяют общий порядок системы дифференциальных уравнений цепи.

2. Дифференциальные уравнения цепи относительно переменных состояния записываются в канонической форме, т. е. представляются решенными относительно первых производных переменных состояния по времени.

Отметим, что только при выборе в качестве переменных состояния токов к в независимых индуктивностях и напряжений на независимых емкостях первое уравнение метода переменных состояния будет иметь указанную выше структуру.

Если в качестве переменных состояния выбрать токи в ветвях с емкостями или токи в ветвях с сопротивлениями, а также напряжения на индуктивностях или напряжения на сопротивлениях то первое уравнение метода переменных состояния также можно представить в канонической форме, т. е. решенным относительно первых производных по времени этих величин. Однако структура их правых частей не будет соответствовать данному выше определению, так как в них будет еще входить матрица первых производных от внешних воздействий

Рис. 14-14.

3. Число переменных состояния равно порядку системы дифференциальных уравнений исследуемой электрической цепи.

4. Выбор в качестве переменных состояния токов и напряжений удобен еще и потому, что именно эти величины согласно законам коммутации (§ 13-1) в момент коммутации не изменяются скачком, т. е. одинаковы для моментов времени

5. Переменные состояния потому так и называются, что в каждый момент времени задают энергетическое состояние электрической цепи, так как последнее определяется суммой выражений

6. Представление уравнений в канонической форме очень удобно при их решении на аналоговых вычислительных машинах и для программирования при их решении на цифровых вычислительных машинах. Поэтому такое представление имеет очень важное значение при решении этих уравнений с помощью средств современной вычислительной техники.

Покажем на примере цепи рис. 14-14, как составляются уравнения по методу переменных состояния.

Сначала получим систему дифференциальных уравнений, соответствующую первому матричному уравнению метода, а затем запишем ее в матричной форме. Алгоритм составления этих уравнений для любой электрической цепи следующий. Сначала записываются урэвнения по законам Кирхгофа или по методу контурных токов; затем выбираются переменные состояния и путем дифференцирования исходных уравнений и исключения других переменных получаются

чаются уравнения метода переменных состояния. Этот алгоритм очень напоминает применяемый в классическом методе расчета пере ходных процессов для получения одного результирующего дифференциального уравнения относительно одного из переменных

В частных случаях, когда в цепи нет емкостных контуров т. е. контуров, все ветви которых содержат емкости, и нет узлов с присоединенными ветвями, в каждой из которых включены индуктивности, может быть указан и другой алгоритм. Не останавливая на нем, отметим лишь, что он основан на замене емкостей источниками э. д. с., индуктивностей — источниками тока и применении метода наложения.

Для цепи рис. 14-14 по законам Кирхгофа

    (14-36)

Определяя из первого уравнения, подставляя в третье, заменяя и представляя полученное дифференциальное уравнение в канонической форме относительно получаем:

Решая второе уравнение (14-36) относительно , заменяя согласно первому уравнению (14-36) и подставляя , получаем:

    (14-38)

Складывая почленно (14-38) с умноженным на уравнением (14-37) и определяя из полученного результата , получаем:

Перепишем уравнения (14-39) и (14-37) в матричной форме:

    (14-4°)

или

где для рассматриваемой цепи имеем:

    (14-42а)

В общем случае первое уравнение метода переменных состояния в матричной форме запишется в виде

    (14-43)

Матрицы А и В в линейных цепях зависят только от параметров цепи , т. е. являются постоянными величинами. При этом А - квадратная матрица порядка и называется основной матрицей цепи, матрица В — в общем случае прямоугольная, размера называется матрицей связи между входом цепи и переменными состояния, матрицы — матрицы столбцы или векторы переменных состояния (размера и внешних возмущений (размера )

В рассматриваемом примере матрица В получилась квадратной второго порядка, так как число переменных состояния равно числу внешних возмущении

Перейдем к составлению второго уравнения метода В качестве выходных можно выбрать любые из величин. Возьмем, например, в качестве выходных три величины

Значения их запишутся через переменные состояния и внешние возмущения непосредственно из уравнений (14 36)

    (14-44)

или в матричнои форме

или сокращенно

    (14-46)

где для рассматриваемой цепи

а в общем случае второе уравнение метода переменных состояния

Матрицы С и D зависят только от параметров цепи . В общем случае — это прямоугольные матрицы соответственно размеров , причем С называется матрицей связи переменных состояния с выходом цепи, матрицей непосредственной связи входа и выхода цепи (или системы).

Для ряда физических систем D является нулевой матрицей и второй член в (14-48) обращается в нуль, так как нет непосред. ственной связи между входом и выходом системы.

Если в качестве переменных состояния взять, например, ток i и напряжение и представить дифференциальные уравнения относительно них в канонической форме, то (опуская все промежуточные преобразования) первое из уравнений метода в матричной форме будет иметь вид:

    (14-49)

где

Таким образом, действительно, первое уравнение метода переменных состояния будет в матричной форме иметь вид (14-43) только при выборе в качестве переменных состояния тока и напряжения

Переходя к решению матричного дифференциального уравнения (14-43), прежде всего отметим, что оно особенно упрощается, если квадратная основная матрица А порядка является диагональной. Тогда все линейных дифференциальных уравнений (14-43) развязаны, т. е. производные переменных состояния зависят каждая только от своей переменной состояния.

Рассмотрим сначала решение линейного неоднородного матричного дифференциального уравнения (14-43) операторным методом Для этого преобразуем его по Лапласу:

где

причем матрица-столбец начальных значений переменных состояния, т. е.

    (14-53)

которые в момент коммутации не изменяются скачком, заданы и равны их значениям в момент

Перепишем (14-51):

где — единичная матрица порядка .

Для получения матрицы изображений переменных состояния умножим слева обе части (14-54) на обратную матрицу

    (14-55)

Переходя обратно к оригиналам при помощи обратного преобразования Лапласа, получаем:

    (14-56)

Из операторного метода известно, что

    (14-57)

По аналогии, записывая обратное преобразование Лапласа в матричной форме, будем иметь:

    (14-58)

где — переходная матрица состояния системы, называемая иначе фундаментальной.

Таким образом, находим оригинал первого слагаемого правой части (14-56)

    (14-59)

Обратная матрица определяется делением присоединенной или взаимной матрицы на определитель основной матрицы:

где уравнение

    (14-61)

представляет собой характеристическое уравнение исследуемой цепи.

Оригинал второго слагаемого правой части (14-56) находится при помощи теоремы свертки в матричной форме

если положить

    (14.64)

и

Тогда на основании (14-62)-(14-64)

и общее решение дифференциального неоднородного матричного уравнения (14-43) на основании (14-56), (14-59) и (14-65) будет иметь вид:

    (14-66)

Первое слагаемое правой части (14-66) представляет собой значения переменных состояния или реакцию цепи при нулевом входе, т. е. Иначе говоря, оно представляет первую составляющую свободных процессов в цепи обусловленную ненулевыми начальными значениями переменных состояния цепи, и поэтому является решением уравнения . Второе слагаемое представляет собой составляющую реакции цепи при т. е. при нулевом состоянии цепи.

Нулевым состоянием цепи назовем такое ее состояние, когда начальные значения всех переменных состояния равны нулю. Иначе говоря, второе слагаемое (14-66) представляет собой сумму при принужденной реакции цепи возникающей под влиянием внешних воздействий и второй составляющей свободных процессов

Равенство (14-66) означает, что реакция цепи равна сумме реакций при нулевом входе и нулевом состоянии.

На основании (14-48) и (14-66) для выходных величин имеем.

Если состояние цепи задано не в момент , а в момент , то равенства (14-66) и (14-67) обобщаются:

    (14-68)

Пример 14-5. Для разветвленной цепи второго порядка составлены уравнения состояния

при ненулевых начальных условиях и при единственном имеющем вней источнике э. д. с.

Найти переменные состояния .

Решение. Перепишем уравнения состояния в матричной форме

где

Найдем сначала первые свободные составляющие переменных состояния при нулевом входе Для этого составим матрицу

Для нахождения присоединенной или взаимной матрицы заменим в предыдущей матрице каждый элемент его алгебраическим дополнением Получим матрицу

Транспонируем ее, найдя присоединенную или взаимную матрицу:

Найдем определитель матрицы

На основании (14-60) обратная матрица будет равна:

Подвергнем ее обратному преобразованию Лапласа с учетом того, что для этого нужно подвергнуть обратному преобразованию Лапласа каждый ее элемент. На основании (14-73) получим переходную матрицу состояния цепи

Например,

Для переходной матрицы состояния системы получим:

Для первых свободных составляющих переменных состояния будем иметь

т. е.

Далее на основании (14-66) найдем сумму принужденных и вторых свободных составляющих переменных состояния:

Суммируя полученные результаты, находим искомые значения переменных состояния:

Так как решение уравнения (14-43) было получено выше и дано формулой (14-66), то для проверки правильности решения (14-66) и вычисления с его помощью матрицы переменных состояния можно сначала непосредственной подстановкой (14-66) в (14-43) убедиться, что последнее при этом обращается в тождество. Для этого нужно только сначала вычислить дифференцируя (14-66). При этом получаем:

Теперь нетрудно непосредственно убедиться, что (14-66) действительно является решенпем матричного дифференциального уравненения

Отметим, что переходная матрица состояния системы ем позволяет найти в пространстве состояний, т. е. в пространстве, число измерений которого равно числу компонент вектора переменных состояния перемещение, начинающееся из некоторого начального положения (при или при ) причем вектор содержит значительную информацию, так как одновременно описывает все переменные состояния, т. е. функции времени .

Для того чтобы непосредственно воспользоваться решением (14-66) и вычислить матричную экспоненциальную функцию не прибегая к обратному преобразованию Лапласа, следует, например, выполнить ее разложение в ряд:

    (14-72)

При этом правую часть (14-72) нужно представить в замкнутой форме, чтобы ее вычисление могло быть произведено путем выполнения конечного числа операций, как, например, в формуле (14-70).

Вычисление переходной матрицы состояния может производиться различными методами — методом разложения в бесконечный ряд, методом, основанным на критерии Сильвестра, методом Кэйли — Гамильтона, методом частотной области, методом передаточной функции и др.

Рассмотрим кратко два первых метода. Сначала рассмотрим первый метод (разложение в бесконечный ряд) на числовом примере.

Найдем переходную матрицу состояний по заданной основной матрице А системы

Степени А получим последовательным умножением на А:

На основании (14-72)

Складывая матрицы правой части, получаем:

Далее следует найти в замкнутом виде каждый элемент этой матрицы. Для данного примера нетрудно убедиться в том, что каждый из элементов матрицы можно представить в замкнутом виде как разность двух экспонент:

    (14-73)

что и решает поставленную задачу.

По методу, основанному на критерии Сильвестра,

где

    (14-75)

Здесь — собственные значения или характеристические числа матрицы А, т. е. простые корни характеристического уравнения цепи (число их равно ).

Рис. 14-15.

Пример 14-6. Для цепи рис. 14-15 при рассчитать ток при включении ее к источнику тока при условии, что в момент включения даны ток в индуктивности и напряжение на конденсаторе , что обеспечивается одновременной и мгновенной коммутацией всех трех рубильников цепи.

Решение. В качестве переменных состояния выбираем а выходной величиной у считаем ток в емкости

На основании законов Кирхгофа составим уравнения состояния цепи и уравнение для выходной величины.

откуда

В матричной форме

Характеристическое уравненне цепи

или откуда

Основная матрица цепи А и матрица связи В равны:

По (14-74) найдем матрицы

По (14-73) найдем переходную матрицу состояний:

    (14-80)

На основании (14-63) найдем матрицу переменных состояний:

    (14-81)

Раскрывая матрицы (14-81), находим:

    (14-82)

На основании (14-76), (14-82) и (14-83) наймем выходною величину

Полученные результаты легко проверить непосредственно для установившегося режима, если источник тока — единичный, . Непосредственно из схемы рис 14-15 следует, что пои этих условиях ток едичнчного источника тока замкнется через индуктивность, т. е. источник тока будет ею закорочен, т. е. и ток в конденсаторе будет равен нулю т. е.

По формулам (14 83), (14-82) и (14 87) получаем, выполняя интегрирование и полагая

<< Предыдущий параграф Следующий параграф >>
Оглавление