Главная > Разное > Биология и квантовая механика
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

19.3. Биохимия процесса мышечного сокращения

Мышцы способны использовать для сокращения около 30% химической энергии, запасенной в молекулах АТФ. Для понимания биохимических процессов, протекающих в мышцах, большое значение имело открытие в 1939 г. В. А. Энгельгардтом и М. Н. Любимовой [124] ферментативной активности комплексов актина с миозином (актомиозин). Они показали, что источником энергии сокращения мышц является гидролиз молекул АТФ при взаимодействии с актомиозином.

Образующиеся при гидролизе молекулы АДФ быстро восстанавливаются до АТФ при присоединении фосфатной группы в результате реакции

Креатинфосфат синтезируется в митохондриях в процессе окислительного фосфорилирования. Скорость дыхания и, следовательно, скорость образования АТФ в мышцах определяется скоростью потребления АТФ. При большой концентрации молекул АТФ в мышцах имеется малая концентрация молекул АДФ и неорганического фосфата. Они ингибируют активность цикла трикарбоновых кислот в митохондриях. При переходе от покоя к полной активности происходит быстрый гидролиз молекул АТФ, концентрация молекул АДФ и неорганического фосфата увеличивается, что приводит к интенсификации процесса гликолиза и окислительного фосфорилирования в митохондриях. При этом потребление кислорода может увеличиться в 20 и более раз.

При максимальной активности мышц, наряду с окислением глюкозы через цикл трикарбоновых кислот в митохондриях происходит усиленный процесс анаэробного гликолиза в трубках саркоплазматической сети. При этом выделяется молочная кислота, которая диффундирует в кровь. После некоторого периода максимальной работы у млекопитающих наблюдается учащенное дыхание. Поступающий кислород расходуется на окисление через цикл трикарбоновых кислот в тканях печени некоторой части избытка молочной кислоты, образовавшейся в период максимальной мышечной активности. При этом синтезируются молекулы АТФ. Остальная часть молочной кислоты, накопившейся в крови, превращается в печени в гликоген.

Актомиозин — комплекс миозина с F-актином — образуется в растворах при смешивании чистых фракций миозина и актина. Оказалось, что с нитями F-актина связываются только головы миозиновых молекул. При добавлении в раствор, содержащий актомиозиновые комплексы, молекул АТФ и ионов происходит диссоциация комплексов актомиозина. Головы миозиновых молекул отрываются от актиновых нитей. При этом происходит неконтролируемый гидролиз молекул АТФ.

Наличие молекул АТФ и ионов в саркоплазме живых мышечных волокон также приводит к разрыву связи тонких нитей с головами миозиновых молекул толстых нитей. После смерти животного количество молекул АТФ в саркоплазме постепенно сокращается и головы миозиновых молекул жестко прикрепляются к тонким нитям — происходит трупное окоченение (мышечные волокна не растягиваются).

При наличии ионов и молекул АТФ в саркоплазме тонкие нити сравнительно свободно перемещаются относительно толстых при наложении внешней нагрузки. Таким образом, комплексы играют роль расслабляющих агентов. Они препятствуют образованию связей (по-видимому, электростатических) между топкими нитями и головами миозиновых молекул;

Разрыв связей между тонкими нитями и головами миозиновых молекул, осуществляемый молекулами АТФ и ионами в мышцах, не приводит, однако, к гидролизу молекул АТФ. Комплексы присоединяются к головам миозиновых молекул. Такое существенно различное поведение топких нитей в саркомере и -актиновых нитей без молекул тропонина и тропомиозина в растворе с миозиновыми молекулами обусловлено наличием в тонких нитях кроме молекул актина двух других белков: тропомиозина и тропонина.

Гидролиз молекул АТФ, прикрепленных к головам миозиновых молекул, в саркомере происходит только в том случае, если уровень концентрации ионов в саркоплазме повысится до значения моль в результате выхода ионов из концевых цистерн саркоплазматической сети при поступлении нервного импульса. Таким образом, вследствие специальной организации четырех типов белков (миозина, актина, актомиозина и тропонина) процесс гидролиза молекул АТФ и, следовательно, процесс сокращения длин мышечных волокон, становится контролируемым [101, 119, 165, 166, 242]. Роль кальция в процессе сокращения была выяснена Маршем в 1952 г. [194]. Решающие эксперименты о контроле сокращения мышц ионами кальция в присутствии молекул тропонина и тропомиозина были выполнены Эбаши, Вебер, Мурей и др. [115—119, 155, 199].

Исследовались растворы голов миозиновых молекул и тонких нитей, извлеченных из мышечных волокон при удалении толстых нитей и отделении их от -пластинок. Голова миозиновой молекулы отделяется от остальной ее части с помощью специального фермента. Изолированные миозиновые головы имеют такую же химическую активность, как и неповрежденные молекулы, однако с изолированными головами работать более удобно.

При исследовании растворов миозиновых голов и тонких нитей в физиологических условиях (значения pH, концентрация ионов и т. д.) Эбаши показал, что так же, как и в случае неповрежденных мышечных волокон, гидролиз молекул АТФ полностью контролируется ионами . Однако, если из тонких нитей удалить молекулы тропомиозина и тропонина, то чувствительность к ионам полностью исчезает. Гидролиз молекул АТФ оставался неконтролируемым, пока не исчезали все молекулы АТФ. Таким образом, было показано, что кальциевый контроль становится, возможным только в присутствии комплекса молекул тропонина и тропомиозина на тонких нитях. В отдельности тропомиозин и тропонин не оказывают такого действия.

Регулирующее действие ионов на процесс мышечного сокращения можно рассматривать по аналогии с действием модуляторов

(эффекторов) на ферменты. Когда присоединяются к молекуле тропонина, сигнал о присоединении передается молекуле тропомиояина, которая передав! его семи молекулам актина. Таким образом, тропомиозин выступает как медиатор информации от тропонина [119]. Молекулярный механизм такой передачи остается неизвестным.

В состоянии релаксации (малая концентрация ) тропонин, действуя через тропомиозин, каким-то образом подавляет взаимодействие голов миозиновых молекул с актином. При повышении концентрации ионов это препятствие снимается, молекулы АТФ гидролизируются и мышцы сокращаются. Следовательно, комплекс молекул фопонин 4- тропомиозин действует как ингибитор, а ионы — как активатор мышечного сокращения.

Регулирующая роль ионов проявляется только при наличии в саркоплазме молекул АТФ. При отсутствии молекул АТФ (после смерти животного) головы миозиновых молекул жестко связываются с тонкими нитями — наступает трупное окоченение. В саркоплазме живых мышечных волокон, молекул АТФ много. При физиологических условиях молекулы АТФ теряют четыре электрона и с ионами образуют комплексы Эти комплексы активно соединяются с головами миозиновых молекул, образуя более сложные комплексы -миозин, которые мы будем кратко называть АТФ-миозиновыми комплек сами.

Одна из рабочих гипотез о механизме осуществления контроля мышечного сокращения ионами кальция была высказана Перри [211] в Оксфордском университете. Он предположил, что при отсутствии ионов молекулы тропонина и тропомиозина препятствуют контакту активных мест голов миозина и молекул актина. Присоединение ионов к молекулам тропонина вызывает такое конформационное изменение комплекса тропонин тропомиозин, которое снимает это стерическое препятствие.

Косвенное подтверждение гипотеза Перри получила при исследованиях диффракции рентгеновских лучей, проведенных Хаксли в 1972-1973 гг. [162, 166] на сокращающихся мышцах. Было показано, что во время сокращения происходит небольшое, но определенное смещение диффракционной картины, обусловленное изменением тонких нитей. Можно было думать, что эти изменения отражают смещение молекул тропомиозина в желобках двойных спиралей тонких нитей. В состоянии релаксации молекулы тропомиозина лежат вблизи внешнего края желобков. При повышении концентрации ионов они смещаются внутрь желобков, освобождая активные места молекул миозина.

Смещение молекул тропомиозина в желобках тонких нитей зарегистрировано Хаксли при исследовании диффракции рентгеновских лучей на сокращающейся мышце. В исследованиях Коэна и Марюссиана (100, 101] обнаружено, что присоединение ионов к субъединице существенно изменяет ее связь с двумя другими субъединицами комплекса. В исследованиях Хитчкука, Хаксли и Сент-Дьерди установлено, что при увеличении концентрации ионов ослабевает связь субъединицы с актином.

Перечисленные результаты качественно подтверждают стерическую модель регулирования ионами процесса мышечного сокращения. При малой концентрации ионов тропониновый комплекс расширен, субъединицы прочно связаны с актином и выталкивают молекулы тропомиозина со дна желобков двойной спирали. При этом молекула тропомиозина блокирует активные центры семи молекул актина от присоединения к ним головок миозиновых молекул (АТФ-миозиновых комплексов). При повышении уровня ионов их присоединение к субъединице приводит к сжатию тропонинового комплекса и ослаблению его связи с молекулами актина. Вследствие этого молекулы тропомиозина смещаются в желобки и освобождают активные центры молекул актина. АТФ-миозиновые комплексы голов миозиновых молекул присоединяются к активным молекулам, происходит гидролиз молекул АТФ и распад АТФ-миозиновых комплексов, что и приводит к сокращению мышц. При этом молекулы АДФ и органический фосфат переходят в саркоплазму. Далее к головам миозиновых молекул снова присоединяются комплексы образуя АТФ-миозиновые комплексы, готовые к новому циклу.

Вебер и Муррей [199] высказали предположение, что процессу гидролиза молекул АТФ предшествует переход АТФ-миозинового комплекса в особое высокоэнергетическое гипотетическое заряженное состояние. В этом состоянии комплекс имеет большую вероятность присоединения к тонким нитям, чем комплекс, находящийся в начальном низкоэнергетическом состоянии. Остается, однако, неясным, что приводит АТФ-миозиновый комплекс в высокоэнергетическое заряженное состояние. Ведь это состояние должно предшествовать процессу гидролиза с выделением энергии.

После открытия тропонина появилось убеждение, что только комплексы тропонина с тропомиозином ответственны за контроль мышечцого сокращения ионами Однако в 1970 г. Сент-Дьерди показал, что молекул тропонина не имеется в мышцах моллюсков. По-видимому, в этих мышцах ионы осуществляют контроль процесса сокращения непосредственно через молекулы тропомиозина.

<< Предыдущий параграф Следующий параграф >>
Оглавление