Главная > Разное > Биология и квантовая механика
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

18.6. Нервно-мышечные синапсы

В области соединения нервного окончания с мышечным волокном нервное волокно, лишенное миелиновой оболочки, расщепляется на тонкие окончания. Каждое такое окончание располагается в мелкой канавке на поверхности мышечного волокна. Между нервным волокном и канавкой имеется щель толщиной около 500 А, которую называют синаптической щелью. Она заполнена жидкостью. Внутри нервных окончаний вдоль части мембраны, прилегающей к синаптической щели, примерно на расстояниях 1 мкм имеются области, содержащие крошечные пузырьки. В каждом пузырке имеется около 101 молекул ацетил-холина. В мембранах мышцы против этих областей имеются значительные углубления, содержащие белковые молекулы — рецепторы молекул ацетилхолина (рис. 54).

Нервный импульс, прибывающий к нервному окончанию, вызывает поток ионов через их мембрану, что способствует соединению синаптических пузырьков с мембраной и выбросу путем экзоцитоза содержащихся в них молекул ацетилхолина в синаптическую щель. Молекулы ацетилхолина диффундируют к мембране мышечного волокна и примерно через 0,3 мс соединяются с рецепторными молекулами, которые открывают натриевые каналы в мембране мышцы. При каждом импульсе открывается около 2000 каналов.

Возникающий вследствие открытия каналов поток ионов внутрь мышечного волокна вызывает электрический ток, деполяризующий мембрану. Эту деполяризацию называют потенциалом концевой пластинки, или возбуждающим постсинаптическим потенциалом. При нормальных условиях такой потенциал превышает пороговое значение и индуцирует в мембране мышечного волокна импульс, который и вызывает затем сокращение длины мышечного волокна.

Чтобы предотвратить повторное действие молекул ацетилхолина, поступивших в синаптическую щель, эти молекулы расщепляются на ацетат и холин специальным ферментом ацетил-холинзстеразой. Этот фермент прикреплен к сети волокон коллагена и мукополисахаридов, располагающихся около синаптической щели.

Согласно оценкам, проведенным Кацем в Лондонском университетском колледже [186], фермент ацетилхолинэстераза разрушает

Рис. 54. Схематическое изображение поперечного сечения вервво-мышечвого синапса: 1 — мембрана нервного волокна; 2 — аксоплазма с синаптическими пузырьками, содержащими ацетилхолин; 3 — шванновская клетка; 4 — мембрана мышечного волокна; S — углубления в мембране, содержащие рецепторы ацетилхолина.

около трети молекул ацетилхолина до того, как они достигнут молекул рецепторов в мембране мышечного волокна. Быстро разрушаются и остальные молекулы ацетилхолина после того, как они в течение миллисекунд были присоединены к рецепторным молекулам. Скорость, с которой молекулы ацетилхолина связываются с рецепторными молекулами и разрушаются ферментом, обеспечивает возможность повторения нескольких сотен возбуждений в секунду.

Для исследования структуры рецепторов ацетилхолина в мембранах мышечных волокон необходимо выделить их из мембран. Решение этой задачи было облегчено после открытия молекулярной метки, связанной почти необратимо с молекулами-рецепторами.

Такой меткой оказались молекулы яда змей типа кобры. Жертвы этих змей погибают в результате паралича дыхательных мышц. Исследованиями Чен Юанли, Лестера и их сотрудников в Национальном Тайванском университете было показано, что молекулы яда блокируют рецепторы молекул ацетилхолина путем прочного присоединения к ним. Они не взаимодействуют с ферментом ацетилхолинэстеразой и не нарушают любой другой процесс нормальной активности мышц. Оказалось, что молекулы яда могут быть помечены радиоактивными атомами йода и водорода. Это позволило исследовать распределение рецепторов в неповрежденных мембранах.

Используя способность молекул ядов присоединяться к рецепторам молекул ацетилхолина, удалось выделить эти рецепторы из мембран электрических органов гигантского электрического ската (и некоторых других электрических рыб). Эти электрические органы развиваются в эмбрионе из тех же клеток, из которых развиваются мышцы. Большие плоские клетки — электродиски — электрических органов таких рыб весьма чувствительны к ацетилхолину. Они содержат очень большое число рецепторных молекул и удобны для их извлечения из мембран с помощью молекул ядов.

В 1971 и 1972 гг. такое выделение удалось провести в нескольких лабораториях. Было установлено, что рецепторные молекулы являются сильно асимметричными белковыми молекулами с

гидрофобными областями и небольшим числом молекул сахаров. Карлин из Колумбийского университета и Шанже из Пастеровского института в Париже высказали предположение, что действие молекулы ацетилхолина на рецепторную молекулу в постсинаптической мембране напоминает действие активаторов на ферменты (см. п. 9.3). Активирующая молекула, присоединяясь к ферменту в некотором месте, может вызвать конформационное его изменение, что скажется на эффективности фермента по отношению к субстрату. Согласно этой аналогии, открытие и закрытие ионных каналов в постсинаптической мембране связано с конформационным преобразованием акцепторной молекулы, вызываемым молекулами ацетилхолина.

Кац и Теслефф обнаружили кооперативное действие молекул ацетилхолина. Присоединение молекулы ацетилхолина к рецептору не только открывает некоторые каналы, но и увеличивает чувствительность рецептора к другим молекулам ацетилхолина. Такое кооперативное поведение, как и в случае ферментов, можно объяснить наличием в рецепторе нескольких субъединиц.

Исследуя с помощью электронных микроскопов очищенные рецепторы электрических дисков электрических рыб, Шанже и другие исследователи показали, что эти диски имеют структуру «розетки» с центральным отверстием, состоящей из пяти или шести субъединиц.

При присоединении молекул ацетилхолина к рецепторам каналы остаются открытыми в течение миллисекунды. Это время увеличивается в три раза, когда температура понижается на 10° С. Время, в течение которого каналы открыты, уменьшается при деполяризации мембраны. Закрытие каналов сопровождается отделением молекул ацетилхолина от рецепторов и последующим их разрушением ферментом ацетилхолинэстеразой.

Молекулярный механизм открытия ионных каналов при присоединении молекул ацетилхолина к рецепторам остается невыясненным.

<< Предыдущий параграф Следующий параграф >>
Оглавление