Главная > Разное > Биология и квантовая механика
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

10.2. Семейство ферментов, расщепляющих белки

В процессе жизнедеятельности в протоплазме клеток даже у нерастущих организмов происходит разрушение и синтез белков из аминокислот. Для синтеза белка определенного типа клетка должна иметь все аминокислоты, входящие в состав белка. Часть этих аминокислот синтезируется самой клеткой, некоторые же (незаменимые) должны извлекаться из пищи. Во время пищеварения белки, поступающие в организм, расщепляются на отдельные аминокислоты, из которых клетка синтезирует нужные ей белки.

Процесс расщепления белков осуществляется различными ферментами, каждый из которых действует на пептидные связи, граничащие с определенными боковыми цепями аминокислот. У всех животных, от самых низших до наиболее сложно организованных, химия пищеварения и участвующие в ней ферменты очень сходны. Эти ферменты синтезируются клетками. У простейших организмов (состоящих из одной клетки) синтез ферментов и пищеварение происходят в пределах этой же клетки. У многоклеточных животных синтез ферментов осуществляется внутри клеток, а пищеварение происходит в особой пищеварительной системе.

При расщеплении белков на каждую пептидную связь затрачивается молекула воды. Водород присоединяется к азоту одной части, а группа ОН — к углероду другой части, в результате образуются две пептидные цепи с аминогруппой и карбоксильной группой на концах. Поскольку процесс расщепления белка связан с поглощением молекул воды, он называется гидролизом. Расщепление пептидных белков не требует затраты энергии, но требует обязательного участия ферментов.

Ферменты — экзопептидааы, — расщепляют только пептидные связи, соединяющие концевые аминокислоты с остальной пептидной цепью. Из них карбоксипептидаза отщепляет аминокислоту от свободной концевой карбоксильной группы, а аминонептидаза отщепляет аминокислоту от свободной концевой аминогруппы.

Ферменты — эндопептидааы — расщепляют только пептидные связи внутри пептидных цепей. К этим ферментам относятся: пепсин, трипсин, химотрипсин и эластаза. Пепсин проявляет наибольшую активность в кислой среде . Он расщепляет пептидные связи, примыкающие к гидрофобным аминокислотным остаткам TYR и РНЕ, содержащим ароматические кольца.

Химотрипсин расщепляет пептидные связи, примыкающие к большим гидрофобным боковым цепям аминокислотных остатков (TYR, РНЕ, MET, LEU,...). Эластаза расщепляет только пептидные связи, примыкающие к малым гидрофобным боковым цепям

аминокислот GLY, ALA и SER. Наиболее селективным пищеварительным ферментом является трипсин. Он разрывает только связи, соседние с лизином или аргинином. Боковые цепи этих аминокислот сравнительно велики, гидрофильны и несут положительный электрический заряд в щелочной среде. Трипсин и химотрипсин проявляют наибольшую активность в щелочной среде pH да 8.

Пепсин выделяется в желудок слизистой оболочкой желудка, а трипсин и химотрипсин выделяются в двенадцатиперстную кишку поджелудочной железой. Однако для предотвращения переваривания белков клеток, в которых они синтезируются, пищеварительные ферменты синтезируются и выделяются не в готовом виде, а в форме неактивных предшественников — пепсиногена, трипсиногена и химотрипсиногена.

В пищеварительном тракте от предшественников пищеварительных ферментов отщепляются небольшие пептидные цепи, и они превращаются в активные ферменты. Пепсиноген с относительной молекулярной массой 42 500 превращается в пепсин с молекулярной массой 34 500 под действием имеющейся в желудке соляной кислоты, а также самого пепсина. Превращение трипсиногена в трипсин катализируется ферментом энтерокиназой. Этот фермент выделяется в очень малых количествах слизистой оболочкой желудка. Его функция состоит только в активации нескольких молекул трипсиногена. Образующиеся молекулы трипсина сами активируют другие молекулы трипсиногена и химотрипсиногена.

Из трех эндопептидаз — трипсина, химотрипсина и эластазы — пространственная структура фермента химотрипсина была определена первой. Это удалось сделать с помощью рентгеноструктурного анализа Блоу и его сотрудникам в Кембриджском университете. Затем группой Ватсона в Бристольском университете была определена пространственная структура фермента эластазы. Строуд, Кей и Дикерсон в Калифорнийском технологическом институте установили [234, 181] трехмерную структуру фермента трипсина. Исследование трехмерной структуры трипсина было особенно трудным из-за исключительной активности фермента. В щелочной среде в течение нескольких минут молекулы трипсина расщепляют друг друга.

Пространственное строение всех трех ферментов в основных чертах одинаково [234]. Каждая глобула стабилизируется шестью дисульфидвыми связями, водородными связями и гидрофобными взаимодействиями.

Еще до выяснения трехмерной структуры этих ферментов было установлено, что они теряют активность, если каким-либо образом изменить аминокислотные остатки: серин 195 и гистидин 57. Следовательно, можно было думать, что они входят в состав

активного центра фермента. Молекула трипсина состоит из 223 аминокислотных единиц. По причине, которая будет указана ниже, нумерация аминокислот в полипептидной цепи фермента начинается от концевой аминогруппы, которой приписывается номер 16.

После определения трехмерной структуры химотрипсина выяснилось, что и аспарагиновая кислота 102 также входит в состав активного центра фермента. Эти три аминокислотных остатка расположены сравнительно далеко друг от друга (на 57, 102 и 195-м местах) вдоль полипептидной цепи. Однако в ферментах, вследствие сворачивания полипептидных цепей, они оказываются соседними и действуют совместно при расщеплении субстратов.

Каталитическое действие ферментов проявляется при вполне определенном расположении фермента и субстрата. Это достигается присоединением субстрата к нескольким точкам поверхности фермента, включающим и его активный центр. Такая область фермента ответственна за «узнавание» своего субстрата.

При исследовании пространственной структуры химотрипсина было найдено, что вблизи активного центра имеется глубокий гидрофобный «карман» на поверхности фермента. Блоу и его сотрудники предположили, что именно в этот карман входят большие гидрофобные боковые цепи субстратов, на которые действует фермент. Закрепление боковой цепи в кармане и взаимодействие с соседними местами активного центра обеспечивает точное расположение субстрата. Таким образом, глубокий гидрофобный карман на поверхности фермента отбирает для катализа только определенные места в полипептидной цепи.

Аналогичное место «узнавания» имеется и у двух других эндопептидаз. В ферменте эластазы такой карман частично блокирован боковыми цепями аминокислотных остатков с номерами 216 и 226. Поэтому он может присоединить нужным образом гидрофобные боковые цепи аминокислотных остатков GLY, ALA и SER, имеющих малые размеры.

В трипсине приемный карман не блокирован, но на его дне имеется боковая цепь аспарагиновой аминокислоты, несущая отрицательный электрический заряд. Поэтому трипсин катализирует только пептидные цепи, соседние с лизином или аргинином, боковые цепи которых имеют положительный электрический заряд.

Исследование характера присоединения субстрата к ферменту кристаллографическими методами невозможно, так как комплекс фермент + субстрат сохраняется только в течение сотых долей секунды. В связи с этим проводится исследование стабильных комплексов ферментов с соответствующими ингибиторами — малыми пептидными молекулами, присоединяющимися к активному центру.

Рис. 22.

Механизм каталитического разрыва ферментом пептидной связи N-С (по Строуду [234]).

Согласно Строуду [234], механизм работы фермента трипсина можнр описать следующим образом. На первой стадии полипептидная цепь субстрата присоединяется к ферменту так, что боковая цепь аминокислотного остатка ARG или LYS с положительным зарядом входит в карман фермента с отрицательным зарядом. При этом соседняя пептидная группа HNCO присоединяется к активному центру, образованному аминокислотными остатками SER 195 и HIS 57 (рис. 22, 1).

Гидролиз пептидной связи начинается, когда кислород гидроксильной группы SER 195 образует химическую связь с углеродом пептидной группы субстрата. При этом двойная связь С=O в пептидной группе превращается в одинарную и углерод переходит в состояние тетраэдрической валентности с отрицательным зарядом на кислороде. Протон гидроксильной группы SER 195 образует химическую связь с правым атомом азота HIS 57, что приводит к перестройке водородной связи левого атома азота HIS 57 с атомом кислорода ASP 102 (рис. 22, 2).

Образовавшееся промежуточное состояние неустойчиво. Водород от азота HIS 57 переходит к азоту пептидной цепи. Пептидная связь разрывается. Двойная связь между углеродом и кислородом снова восстанавливается. Остатки HIS 57 и ASP 102 возвращаются к первоначальному состоянию (рис. 22,3), и первый фрагмент пептидной цепи с образовавшейся концевой аминогруппой удаляется от фермента.

На этой стадии в реакцию вступает молекула воды из окружающей среды (рис. 22, 4). Ее протон связывается с правым атомом азота HIS 57 с одновременным преобразованием водородной связи между ASP 102 и левым атомом азота HIS 57. Гидроксильный ион ОН- молекулы воды присоединяется к углероду субстрата, который снова переходит в тетраэдрическое состояние с преобразованием двойной связи в одинарную С-О- (рис. 22, 5).

Далее связь разрывается с освобождением водорода. Разрывается также связь С-О между оставшейся частью субстрата и SER 195. Протон от азота HIS 57 смещается к кислороду SER 195, вызывая перестройку водородной связи между HIS 57 и ASP 102 (рис. 22, 6). Электростатическое отталкивание между отрицательными электрическими зарядами ASP 102 и образовавшимся вторым фрагментом полипептидной цепи с концевой карбоксильной группой освобождает фермент, которщй теперь может приступить к расщеплению другого белка. Авторы предложенного механизма ферментативной активности трипсина постулируют возможность согласованной перестройки водородных связей остатка аминокислоты HIS 57 с соседними аминокислотными остатками ASP 102 и SER 195. Они считают, что такая возможность обусловлена специальным окружением этих остатков аминокислот.

Нет сомнения, что предложенный на молекулярном уровне механизм работы фермента трипсина представляет большой интерес, хотя и носит чисто описательный характер. Это объяснение не учитывает конформационных преобразований фермента.

Удалось также установить механизм активации трипсиногена, химотрипсиногена и эластогена. При синтезе в клетках поджелудочной железы эти молекулы содержат со стороны иминокон-цов начальные участки, состоящие из 15 аминокислот. Операция активации предшественников ферментов состоит в отрыве этих начальных участков от молекулы. Оставшиеся части, начинающиеся с номера 16, и являются активными ферментами.

Рассмотренные выше пищеварительные ферменты относятся к большой группе ферментов, расщепляющих белки на отдельные фрагменты. Они теряют активность (ингибируются) при блокировании остатка аминокислоты серина. Поэтому они иногда называются «серино-ферментами». По-видимому, все они имеют активные центры, в которые входят такие же остатки аминокислот, как и у трипсина. Все эти ферменты расщепляют только пептидные связи в белках. Они не затрагивают других связей между атомами в белках и всех связей в небелковых молекулах. Специфичность этих ферментов определяется различными свойствами шест узнавания», к которым присоединяются только субстраты определенного типа.

Кроме пищеварения серино-ферменты принимают участие во многих физиологических явлениях. Они участвуют в образовании и растворении кровяных сгустков, в иммунологических реакциях по отношению к чужеродным клеткам (антигенам) и организмам, в оплодотворении яйца сперматозоидом. Хотя эти ферменты выполняют различные биологические функции, они используют один и тот же способ действия — расщепление некоторых пептидных связей в белках.

Исключительно важна роль серино-ферментов как средства контроля над некоторыми физиологическими процессами. Эффективность такого контроля обусловлена тем, что их активность поддается очень тонкому контролю. Степень их активности легко управляется различными ингибиторами, которые могут иметь широкий спектр действия или, наоборот, быть специфичными, блокируя некоторые группы аминокислотных остатков или только одну.

Очень важным свойством серино-ферментов, обеспечивающим их действие только в определенном месте и в определенное время, является то, что они синтезируются в виде неактивных предшественников и становятся активными, только подвергаясь действию других ферментов. В каждом случае процесс активации заключается в отщеплении небольшого участка пептидной цепи путем разрыва только одной пептидной связи.

Одним из важных серино-ферментов является тромбин, участвующий в процессе свертывания крови человека и многих животных при повреждении ткани. Механизм свертывания крови очень сложен. Он состоит из нескольких последовательных реакций, в результате каждой из них образуется фермент, необходимый для последующей реакции.

Тромбоциты, или кровяные пластинки, находящиеся в плазме крови, попадая в поврежденное место, разрушаются. При этом разрушении выделяется тромбопластин, который катализирует превращение протромбина (один из белков плазмы, синтезируемый в печени) в тромбин. Тромбин действует как фермент, катализирующий превращение фибриногена в фибрин.

Фибриноген является длинной палочкообразной молекулой белка, растворенной в плазме крови. Относительная молекулярная масса фибриногена равна 33 000. Его растворимость обусловлена наличием в полипептидной цепи аминокислотных остатков аргинина и глицина, несущих электрические заряды.

Тромбин еще более специфичен, чем трипсин. Он разрывает только четыре пептидные связи, находящиеся между аминокислотными остатками аргинина и глицина. Трипсин же расщепил бы эту молекулу на 150 фрагментов. При гидролизе этих связей освобождается четыре небольшие пептидные цепи, несущие электрические заряды. Потеряв аминокислотные остатки с электрическими

зарядами, фибриноген превращается в нерастворимый фибрин.

Тромбин, как и трипсин, имеет вблизи активного центра приемный карман с аспарагиновой кислотой (ASP 189), к которому присоединяется аргининовая боковая цепь субстрата, однако, в отличие от трипсина, каталитическое действие тромбина проявляется только тогда, когда субстрат присоединяется также к другому месту фермента, которое может принять наименьшую боковую аминокислотную цепь — глицин.

Образовавшиеся в результате действия тромбина молекулы фибрина связываются водородными связями в полимолекулярные комплексы. Одновременно тромбин активирует другой фермент — так называемый стабилизирующий фактор тромбина, который стабилизирует комплекс, связывая ковалентными связями кислотные цепи глутаминовых кислот с основными цепями лизинов соседних молекул. Между волокнами фибрина этого комплекса задерживаются красные и белые кровяные тельца, увеличивая плотность сгустка и образуя кровяной тромб.

Растворение тромбов крови осуществляется серино-ферментом— плааминогеном. Он активируется так же, как трипсин, путем разрыва одной пептидной связи между аргинином и валином. Активированный фермент — плаамин — разрывает все пептидные связи, соседние с аргинином или лизином в молекулах фибрина.

Патологическое свертывание крови в кровеносных сосудах (тромбоз) часто обусловлено высоким уровнем ингибиторов плазмина в крови. Гепаринполисахарид, извлекаемый из печени, подавляет превращение протромбина в тромбин.

<< Предыдущий параграф Следующий параграф >>
Оглавление