Главная > Разное > Биология и квантовая механика
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

9.4. Контроль биохимических реакций

Поведение живых организмов отличается большой приспособляемостью к изменяющимся окружающим условиям. Эта приспособляемость обусловлена саморегуляцией интенсивности протекающих в них биохимических реакций. В ответ на повышенную необходимость в расходовании кислорода при интенсивной работе сердце увеличивает частоту сокращений; при приеме пищи увеличивается интенсивность выделения пищеварительных ферментов; повышение количества сахара в крови вывивает увеличение секреции инсулина поджелудочной желевой; порее кровеносного сосуда вывивает преобразование протромбина в тромбин, который приводит к соэданию тромба в месте пореэа и т. д.

Способностью к саморегуляции обладает не только организм в целом, но и его отдельные клетки. Каждая клетка является автоматической саморегулирующейся системой. Она экономно извлекает из внешней среды нужные химические вещества и освобождается от переработанных продуктов. В клетке синтезируются белки, липиды, углеводы, нуклеиновые кислоты, в клетке же происходят химические преобразования, обеспечивающие ее энергией.

Различные процессы, происходящие в клетке, взаимосвязаны и требуют тщательной регулировки. Такая регулировка осуществляется посылкой определенных сигналов, которые воспринимаются особыми приемниками, преобразующими сигналы в активные действия.

В биологических системах интенсивность химических реакций определяется наличием соответствующих ферментов. При этом процесс регуляции деятельности ферментов может осуществляться двумя путями: изменением концентрации ферментов и изменением активности ферментов (активация и ингибирование).

Моно с сотрудниками [197] в Пастеровском институте в Париже открыл явление подавления активности ферментов при повышении концентрации продуктов реакции выше некоторого уровня. Они как бы посылают сигналы ферментам о том, что дальнейшее повышение их концентрации не нужно. Было обнаружено, что когда среда, в которой культивировались бактерии E-coli, содержала добыток аминокислоты триптофана, клетки прекращали синтез фермента триптофансинтетаэы, который участвует в синтезе этой аминокислоты.

Такой же эффект наблюдался при исследовании Умбергером и его сотрудниками синтеза бактерией E-coli аминокислоты изолейцина ILEU. Молекулы ILEU, меченые радиоактивными атомами, добавлялись в среду, в которой культивировались бактерии. Оказалось, что при увеличении концентрации молекул ILEU выше некоторой предельной бактерии прекращают синтез этих молекул. Таким образом, концентрация молекул ILEU являлась сигналом, контролирующим их синтез.

Умбергер с сотрудниками показал, что присутствие избытка аминокислоты проявляется в двух процессах: 1) подавляется активность ферментов, участвующих в синтезе аминокислоты; 2) прекращается синтез самих ферментов. Выяснилось также, что эти два механизма регуляции действуют совершенно независимо.

Влияние концентрации молекул на процесс их синтеза клетками обнаружен не только у бактерий, но и у клеток других организмов. Иногда повышение концентрации некоторых молекул вызывает не подавление, а повышение активности ферментов. Например, избыточное количество глюкоэы приводит к повышению активности ферментов, участвующих в образовании запасов гликогена.

Ферменты синтезируются на бактериальных хромосомах. Моно и Жакоб в Пастеровском институте показали, что скорость синтеза фермента контролируется «регуляторным геном» хромосомы, а его структура — «структурным геном». Оба гена пространственно разделены в хромосоме.

Парди, Жакоб и Моно далее показали, что процесс контроля скорости синтеза фермента осуществляется регуляторным геном путем синтеза «репрессивных» молекул, которые контролируют эффективность структурных генов. Действие репрессивных молекул на структурный ген не прямое. Они присоединяются к особому месту хромосомы — «оператору». После присоединения репрессивной молекулы к оператору, он выключает действие структурного гена и, следовательно, прекращает синтез фермента. Процесс повышения скорости синтеза ферментов сводится к подавлению активности репрессора.

Зависимость активности ферментов от концентрации продуктов реакции была отмечена еще в 1950 г. сотрудниками Чикагского университета Новиком и Сцилардом. Они показали, что избыток триптофана в бактерии E-coli немедленно останавливает его синтез. Следовательно, сигнал о избытке триптофана подавляет активность уже имеющихся ферментов.

Умбергер показал, что при увеличении концентрации молекул изолейцина выше определенного уровня они ингибируют первый фермент в цепи синтеза. Оказалось, что процесс ингибирования не требует затраты энергии.

Контролирующая система может не только подавлять, но и

повышать активность ферментов. Примером «положительного» контроля является запасание и использование клеткой животного крахмала — гликогена. Клетки животных запасают энергию форме гликогена. Гликоген синтезируетя от его предшественника - глюкоза-6-фосфата с помощью трех ферментов. Вначале глюкоза-6-фосфат преобразуется в глюкозу-1-фосфат, затем глюкоза-1-фосфат преобразуется в уридиндифосфатглюкозу. Наконец, последний преобразуется в гликоген.

Когда клетка хорошо снабжается пищевыми продуктами, она производит много глюкоза-6-фосфата. Большое количество этих молекул служит сигналом для стимулирования синтеза гликогена. Этот сигнал действует на третью ступень процесса — активирует фермент, преобразующий уридиндифосфатглюкозу в гликоген.

С другой стороны, когда снабжение клетки пищевыми продуктами падает, возникает необходимость использования запасенного гликогена. Это осуществляется путем активации фермента гликогенфосфорилазы, который расщепляет гликоген. Фермент активизируется молекулами аденозинмонофосфата (АМФ). Молекулы АМФ являются продуктами гидролиза молекул аденозин-трифосфата АТФ при совершении клеткой какой-либо работы. Накопление молекул АМФ указывает, что клетка использовала энергетический источник в виде молекул АТФ. Молекула АМФ активирует гидролиз гликогена, выделяемая энергия используется для синтеза молекул АТФ.

В некоторых случаях ингибирование и активация осуществляется одновременно. Например, при синтезе нуклеиновых кислот используется строго одинаковое число пуриновых и пиримидиновых оснований. Гергарт и Парди показали, что, хотя эти основания синтезируются при участии разных ферментов, они действуют согласованно. Повышение концентрации пуриновых оснований подавляет активность ферментов, участвующих в их синтезе, и активирует ферменты, участвующие в синтезе пиримидиновых оснований. Повышение концентрации пиримидиновых оснований вызывает обратный эффект.

Как правило, ферменты, участвующие в процессах регуляции, относятся к типу аллостерических (см. п. 9.3), т. е. проявляют свойства кооперативности.

На основании анализа экспериментальных данных Моно, Жакоб и Шанже пришли к заключению, что передача сигнала от регулирующей молекулы к ферменту (активация или ингибирование) осуществляется с помощью непрямого (аллостериче-ского) эффекта [97]. Места присоединения регулирующей молекулы и субстрата пространственно разделены.

«Передача сообщения» от регулирующей молекулы к ферменту сводится к его конформационному изменению. В качеств»

подтверждения этого заключения Шанже [97] указывает на эксперименты Герхарта, которые показали, что фермент транскарбомилазы имеет места присоединения для субстрата и ингибитора на равных субъединицах молекулы. После разъединения субъединиц одна из них может присоединить только субстрат, а другая — только ингибитор.

<< Предыдущий параграф Следующий параграф >>
Оглавление