Главная > Математика > Аналитическая геометрия
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

§ 2. Прямая как линия пересечения двух плоскостей. Общие уравнения прямой.

Пусть в канонических уравнениях прямой

коэффициент отличен от нуля, т. е. прямая не параллельна плоскости хОу. Запишем эти уравнения раздельно в таком виде:

При нашем условии уравнения (6) вполне определяют прямую. Каждое из них в отдельности выражает плоскость, причем первая из них параллельна оси Оу, а вторая — оси

Таким образом, представляя прямую линию уравнениями вида (6), мы рассматриваем ее как пересечение двух плоскостей, проектирующих эту прямую на плоскости координат xOz и yOz. Первое из уравнений (6), рассматриваемое в плоскости определяет проекцию данной прямой линии на эту плоскость; точно так же второе из уравнений (6), рассматриваемое в плоскости определяет проекцию данной прямой линии на плоскости yOz. Итак, можно сказать, что дать уравнения прямой линии в виде (6) — это значит дать ее проекции на плоскости координат хOz и yOz.

Если бы направляющий коэффициент был ранен нулю, то обязательно хотя бы один из двух других коэффициентов, например , был бы отличен от нуля, т. е. прямая не была бы параллельна плоскости yOz. В этом случае мы могли бы выразить прямую

уравнениями плоскостей, проектирующих ее на координатные плоскости записав уравнения (5) в виде

Таким образом, любая прямая может быть выражена уравнениями двух плоскостей, проходящих через нее и проектирующих ее на координатные плоскости. Но определять прямую совсем не обязательно именно такой парой плоскостей.

Через каждую прямую проходит бесчисленное множество плоскостей. Любые две из них, пересекаясь, определяют ее в пространстве. Следовательно, уравнения любых двух таких плоскостей, рассматриваемые совместно, представляют собой уравнения этой прямой.

Вообще всякие две не параллельные между собой плоскости с общими уравнениями

определяют прямую их пересечения.

Уравнения (7), рассматриваемые совместно, называются общими уравнениями прямой.

От общих уравнений прямой (7) можно перейти к ее каноническим уравнениям. Для этой цели мы должны знать какую-нибудь точку прямой и направляющий вектор.

Координаты точки легко найдем из данной системы уравнений, выбирая одну из координат произвольно и решая после этого систему двух уравнений втносителыю оставшихся двух координат.

Для отыскания направляющего вектора прямой заметим, что этот вектор, направленный по линии пересечения данных плоскостей, должен быть перпендикулярным к обоим нормальным векторам этих плоскостей. Обратно, всякий вектор, перпендикулярный к параллелен обеим плоскостям, а следовательно, и данной прямой.

Но векторное произведение также обладает этим свойством. Поэтому за направляющий вектор прямой можно принять векторное произведение нормальных векторов данных плоскостей.

Пример 1. Привести к каноническому виду уравнения прямой

Выберем произвольно одну из координат. Пусть, иапример, . Тогда

откуда Итак, мы нашли точку (2, 0, 1), лежащую на прямой,

Находя теперь векторное произведение векторов получаем направляющий вектор прямой Поэтому канонические уравнения будут:

Замечание. От общих уравнений прямой вида (7) можно перейти к каноническим, и не прибегая к векторному методу.

Предварительно остановимся несколько подробнее на уравнениях

Выразим из них х и у через . Тогда получим:

где положено

Уравнения (6) называются уравнениями прямой в проекциях на плоскости

Установим геометрический смысл постоянных М и N: М представляет собой угловой коэффициент проекции данной прямой на плоскость координат (тангенс угла этой проекции с осью Oz), а N есть угловой коэффициент проекции данной прямой на плоскость координат (тангенс угла этой проекции с осью Oz). Таким образом, числа определяют направления проекций данной прямой линии на две плоскости координат, а значит, они характеризуют и направление самой данной прямой. Поэтому числа М и N называют угловыми коэффициентами данной прямой.

Чтобы выяснить геометрический смысл постоянных положим в уравнениях (6) прямой линии тогда получим: т. е. точка лежит на данной прямой. Очевидно, эта точка есть точка пересечения данной прямой с плоскостью Итак, суть координаты следа данной прямой линии на плоскости координат

Теперь легко сделать переход от уравнений в проекциях к каноническим. Пусть, например, даны уравнения (6). Решая эти уравнения относительно , найдем:

откуда непосредственно получаем канонические уравнения в виде

Пример 2. Привести канонические уравнения прямой

к уравнениям в проекциях на плоскости

Данные уравнения переписываем в виде

Решая первое из этих уравнений относительно х, а второе относительно у, найдем искомые уравнения в проекциях:

Пример 3. Привести уравнения в ппоекциях

к каноническому виду.

Решая данные уравнения относительно , получим:

Отсюда

Пример 4. Принести уравнения в проекциях

к каноническому виду.

Переписав систему уравнений в виде

найдем:

Уравнения в проекциях можно получить и из общих уравнений прямой (7), решая общие уравнения относительно каких-нибудь двух координат, например х и у, если прямая параллельна плоскости хОу, то привести уравнения (7) к уравнениям (6) не удастся, но тогда можно привести уравнения (7) к уравнениям в проекциях на другую пару координатных плоскостей.

Если требуется общие уравнения прямой привести к каноническим, то можно предварительно перейти к уравнениям в проекциях.

Пример 5. Привести уравнения прямой

к каноническому виду.

Решая данные уравнения относительно х и у, найдем уравнения в проекциях

Выражаем из этих уравнений :

и получаем каноническне уравнения

Умножив каждым из направляющих коэффициентов на — 5, получим более простой вид канонических уравнений:

<< Предыдущий параграф Следующий параграф >>
Оглавление